منابع مشابه
Extended Lagrange interpolation on the real line
Let {pm(wα)}m be the sequence of the polynomials orthonormal w.r.t. the Sonin-Markov weight wα(x) = e−x 2 |x|. The authors study extended Lagrange interpolation processes essentially based on the zeros of pm(wα)pm+1(wα), determining the conditions under which the Lebesgue constants, in some weighted uniform spaces, are optimal.
متن کاملThe Uncertainty Principle for Fourier Transforms on the Real Line
This paper will explore the heuristic principle that a function on the line and its Fourier transform cannot both be concentrated on small sets. We begin with the basic properties of the Fourier transform and show that a function and its Fourier transform cannot both have compact support. From there we prove the Fourier inversion theorem and use this to prove the classical uncertainty principle...
متن کاملPOINTWISE PSEUDO-METRIC ON THE L-REAL LINE
In this paper, a pointwise pseudo-metric function on the L-realline is constructed. It is proved that the topology induced by this pointwisepseudo-metric is the usual topology.
متن کاملOn a convergence of the Fourier-Pade interpolation
We investigate convergence of the rational-trigonometric-polynomial interpolation that performs convergence acceleration of the classical trigonometric interpolation by sequential application of polynomial and rational correction functions. Unknown parameters of the rational corrections are determined along the ideas of the Fourier-Pade approximations. The resultant interpolation we call as Fou...
متن کاملQuasi-interpolation in the Fourier algebra
We derive new convergence results for the Schoenberg operator and more general quasi-interpolation operators. In particular, we prove that natural conditions on the generator function imply convergence of these operators in the Fourier algebra A(Rd) = FL1(Rd) and in S0(R), a function space developed by the first author and often used in time-frequency analysis. As a simple yet very useful conse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications mathématiques de l'IHÉS
سال: 2018
ISSN: 0073-8301,1618-1913
DOI: 10.1007/s10240-018-0101-z